タンクモデル

タンクとは貯留槽のことであり、タンクモデルは、河川の流出量の予測などに使われる雨量と水位、流出量の関係を表すモデルである。 もちろん、通常の液体の貯留槽の解析や液面制御系の解析などもタンクモデルで表現できる。

水文学の分野では1974年にWMOが行った「水文学における概念モデルの相互比較」おいてよい成績を示して以来,タンク・モデルは世界的に知られるようになり,その後海外の河川への適用例も増し実用に供されるようになった。

タンク:流量の式

水のような非圧縮性流体がタンクに入れられていた場合、底のバルブから出る流れの流速は、ベルヌーイの定理から、次式で求まる

p + ρgz + ρ(v^2)/2 = 一定
流体の密度ρ:一定
重力加速度:g
圧力:p
高度差:z(=タンクの水面から出口バルブまでの高さ)
流速:v

水槽のの出口バルブが十分小さいとし、単位時間当たりの流出量が小さい(液面の高さがほぼ一定のh)だとすると、流出する流速は、水位の平方根に比例する。これは、水面と出口の圧力差で流速が決まることを意味する。

v = √(2gh)

バルブの流量はバルブの前後の圧力差に比例します(水圧を電圧、流量を電流と読み変えてみるとオームの法則と同じ形。) 上記に出口の面積sを掛ければ、流出量になる。

  • 例題: 半径6m、高さ6mの円筒容器の底に半径0.1mの排出管がついた装置の場合、満杯(水位6m)の場合と3mの場合の1秒当たり何m^3の水が流出するか?
  • 例題の答:満杯ではQ=√(9.8*6)*0.1*0.1*π =0.24m3/s、水位3mではQ=√(9.8*3)*0.1*0.1*π =0.17m3/s

タンクモデルの簡単な例

1つのタンクの流出量の式は簡単な1次微分方程式であらわされる。多数のタンクが連なってもこの合成式で表される。すなわち、タンクの数だけの次元の連立線形微分方程式で表現できる。

  • 底面積A [cm2]のタンクに液面レベルh[cm]で液が入っており,これに流入流量r [m3/s]で液が流入し,タンク底からバルブを通して流出している。タンク底からの流出流量は液面レベルh とバルブの出口面積sに依存し,流出流速=√(2gh)としよう。
    • 液面レベル系では被制御変数が液面レベルh ,操作変数が流入流量 r である。
    • 1槽モデルにおいて,物質収支((タンク内液量変化)=(流入流量)―(流出流量))からh とq の関係は次式である。
      dh/dt = r-s√(2gh)  :質量保存式
      一般には
      dh/dt=(1/A)(qin-qout)
      qout=α√h
      である。
  • 河川の流出量解析の事例 一般には非線形の微分方程式になる。
    TankModel.JPG
    TankEq.JPG
    • 式のS;貯留高(mm),r:観測雨量(mm/hr),q1,q2:側方流出高(mm/hr)ps・z2:浸透量(mm/hr),k:貯留係数,α1~α4:損失係数,p1・p2:貯留指数とよぶ。
    • 最初の式は物質収支式で、次の式は水位流量式。

状態推移方程式:河川の事例

上記の図のように、直列二段型貯留関数モデルの場合には、状態変数を流出量q1,q2とその変化率(合計4変数)として、非線形方程式で表現できる。


添付ファイル: fileTankModel.JPG 367件 [詳細] fileTankEq.JPG 358件 [詳細]

トップ   差分 バックアップ リロード   一覧 単語検索 最終更新   ヘルプ   最終更新のRSS
Last-modified: 2010-09-05 (日) 17:00:00 (2941d)